Ribblesdale Federation of Schools

Maths Calculations Policy

Reviewed by: (T Ward, January 2021)
Approved by governors: February 2021
Review date: January 2024
Executive Headteacher: T Ward
Chair of Governors: P. Gibbons

Our Maths curriculum incorporates the use of high-quality mathematics work using a CPA approach (Concrete, Pictorial, Abstract), which are tailored to the needs of the learners in the school.

We provide opportunities to teach key mathematical strategies which support reasoning and problem solving. Mental and written calculation methods are taught alongside each other. When teaching children to calculate, emphasis is placed on choosing and using the approach that is the most efficient for the given situation and the child's ability to explain their working.

White Rose Maths Hub planning and resources are used as a starting point for our mathematics curriculum which is used to plan against age related expectations, the unique need of learners and the teaching of other subjects.

Children need to be able to explain，illustrate and justify relationships，patterns and generalisations within addition and subtraction using models and images to support their reasoning．Equipment and manipulatives should be used throughout all stages to support children in developing their ability to explain their thinking．

Examples with Subtraction
Generalisations

What are the rules for subtracting odd and even numbers？Are they the same as addition？Experiment with different pairs of numbers to find a general rule for adding；

$$
\begin{aligned}
& \text { odd - odd } \\
& \text { odd - even } \\
& \text { even - odd } \\
& \text { even - even }
\end{aligned}
$$

Use these shapes to help vou explain your reasoning

Patterns and Reasoning

Take any two digit number．Reverse the digits．Subtract the smaller number from the larger number．Write down your answer．Repeat with different two digit numbers．What do you notice about your answers？Does this always happen？Use Dienes to help you explain why．

昌昌昌口昌昌口

ADDITION

									Examples	Guidance and Notes

Stage 3: Develop understanding of using the empty number line

The empty number line is intended to be a representation of a mental method, not a written algorithm. Therefore the order and size (physical and numerical) of the jumps should be expected to vary from one calculation to the next.

The empty number line helps to record the steps on the way to calculating the total.

Steps in addition can be recorded on a number line e.g. $8+7=$

Extending to more efficient 'jumps' e.g. 34
$+23=$

And e.g. $48+36=$

$o:$

Children should be taught to use jumps of different sizes, and completed in an order that is most helpful depending on the numbers they are calculating with.

This reinforces that this is a visual representation of a mental method and not a written alogrithm.

Stage 4: Partitioning to support progression prior to introducing a formal written method Children need to be able to partition numbers in ways other than into tens and ones to support mental calculations. Partitioning into tens and ones will support progression to the columnar method for addition.	Children should use a range of practical apparatus (straws, Dienes apparatus, place value cards, place value counters) to support partitioning for addition progressing through gradually more abstract representations. Straws, bundled into 10s and singularly allow children to see, create and count the ' 10 ' within the bundle. This then progresses to the use of Dienes (or similar) where 10 s are clearly marked in ones but cannot be separated in the same way e.g. $25+47=$ Children need to have understanding of the size of number and the concept of one to many through multiplication before place value counters as these are a further abstraction as the ' 10 ' is labelled but not 'seen'. $48+36$ $\begin{aligned} & 40+30=70 \\ & 8+6=14 \end{aligned}$ Money should also be used (1ps, 10ps and $£ 1$) as place value equipment to help children develop their understanding of a range of representations.	Children may make jottings to support their thinking during at the beginning of this stage. This stage explores the processes practically until they are secure with the concept before the written recording is introduced (stage 5). Children should use the term 'exchange' or 'regroup' to describe converting ten ones into one ten rather than 'carrying'. Choose calculations carefully to ensure the size of numbers do not distract focus from the concept.

Stage 5: Using Dienes alongside columnar written method To ensure the statutory final written method is grounded in understanding, this stage connects the practical equipment to the formal written method using a similar and transferrable layout.	It may be appropriate to teach children the process with numbers that they would be more apprpriate to calculate mentally or with jottings to aid with the practicalities of the use of such equipment. However this should be the exception rather than the rule so children see a clear purpose for learning a new method for calculating e.g. $25+47=$	Children should first experience the practical version of column addition and move to recording the written method alongside when they are confident in the process and once modelled by the teacher. Children should experience this stage with a variety of practical equipment to make sure their understanding is embedded and transferrable between representations. When the tens barriers is crossed 'exchange' or 'regrouping' then takes place
Stage 6: Securing the compact column method Extend to more complex combinations such as three two-digit numbers, two three-digit numbers, and problems involving several numbers of different sizes, including decimals.	$\begin{array}{r} 258 \\ +866 \\ \hline \frac{345}{11} \end{array} \begin{array}{r} +458 \\ \hline 11 \end{array}$ Extend to four-digit, add four-digit and more complex combinations such as several numbers to be added, problems involving several numbers of different sizes and further to include decimals.	Schools should decide on a consistent approach to the location of exchanged digits and encourage children to be consistent with their placement to reduce errors. However, understanding is more important than positioning and this should be made clear to children.

SUBTRACTION

Stage	Examples	Guidance and Notes
Stage 1: Recording and developing mental pictures Children are encouraged to develop a mental picture of the calculation in their heads. They experience practical activities using a variety of equipment and develop ways to record their findings including models and pictures.	Subtraction as take-away Subtraction as finding the difference The dffforence is?	Initially recording of calculating should be done modelled by adults. Over time, gradually introduce children to the recording process. Children should be introduced to subtraction as take-away and difference, depending on the model that suits the story.
Stage 2: developing additive* number relationships This stage focuses on children developing a secure understanding of the relationships between numbers through a variety of models and approaches.	Part, part, whole models $12-8=$ 12 8 $11-6=$ Ten frames Use the frame to help you calculate 9-2 = Hundred square	Ensure children are exposed to opportunities to use number bonds for all whole numbers up to 20 to help them find 'families of facts' Ten frames support number bonds to 10 , bridging through 10 and subitising numbers up to ten (or 'distance' from 10). The hundred square can be used to support additive patterns in number as well as a tool for counting back.

Stage 4: Develop understanding of using the empty number line

The empty number line is intended to be a representation of a mental method, not a written algorithm. Therefore, the order and size (physical and numerical) of the jumps should be expected to vary from one calculation to the next.

The empty number line helps to record the steps on the way to calculating the total.

Counting Back

$$
15-7=8
$$

The seven is partitioned into 5 (to allow count back to 10) and two.

$74-27=47$ worked by counting back:

The steps may be recorded in a different order:

or combined

Counting on

$74-27=$

The 'jumps' should be added, either mentally or with jottings according to confidence, beginning with the largest number e.g. $40+4+3$.
or

Progressing to choosing whether to count on or count back depending on what suits the numbers in the calculation e.g.

Children should be taught to use jumps of different sizes, and completed in an order that is most helpful depending on the numbers they are calculating with.

This reinforces that this is a visual representation of a mental method and not a written alogrithm.

It is important that the empty number line is used for subtraction both as a mental model for supporting 'counting back' (to support the concepts of take-away and reduction) and for 'counting on' (to support the concepts of difference and subtraction as the inverse of addition)

Stage 5: Partitioning to support progression to lead to a formal written method through takeaway Children need to be able to partition numbers in ways other than into tens and ones to support mental calculations. Partitioning into tens and ones will support progression to the columnar method for subtraction.	Children should use a range of practical apparatus (straws, Dienes apparatus, place value cards, place value counters) to support partitioning for subtraction progressing through gradually more abstract representations. Straws, bundled into 10s and singularly allow children to see create and count the ' 10 ' within the bundle. This then progresses to the use of Dienes (or similar) where 10s are clearly marked in ones but cannot be separated in the same way e.g. 72 $-47=$ Once children are able to use these with understanding, they will be able to progress to the use of place value cards and place value counters which are a further abstraction as the ' 10 ' is labelled but not 'seen'. Money should also be used ($1 \mathrm{ps}, 10$ ps and $£ 1$) as place value equipment to help children develop their understanding of a range of representations.	Children may make jottings to support their thinking during at the beginning of this stage. This stage explores the processes practically until they are secure with the concept before the written recording is introduced (stage 5). Children should use the term 'exchange' or 'regrouping' to describe converting ten ones into one ten rather than 'borrowing'. Because of the cumbersome nature of 'exchanges' in this form, it may be helpful to limit examples that children are expected to do with the practical equipment limited to 3-digit take 3digit with one exchange in each calculation.

Stage 6: Using Dienes alongside columnar written method To ensure the statutory final written method is grounded in understanding, this stage connects the practical equipment to the formal written method using a similar and transferrable layout.	72-47 7 ones and then 4 tens are removed, leaving 25 . The 25 can be dragged to the botton to model the recording used in the written algorithm Tens Ones or	Children should first experience the practical version of column subtraction and move to recording the written method alongside when they are confident in the process and once modelled by the teacher. Children should experience this stage with a variety of practical equipment to make sure their understanding is embedded and transferrable between representations. When the tens barriers is crossed 'exchange' or 'regroup' takes place.
Stage 7: Compact column method Extend to more complex combinations such as three two-digit numbers, two three-digit numbers, and problems involving several numbers of different sizes, including decimals.	Children may find it more helpful to present their exchanges like this to keep the numbers clear. $\begin{array}{ccc} 4 & 9 & 17 \\ -5 & 0 & 7 \\ 1 & 8 & 9 \\ \hline 3 & 1 & 8 \end{array}$	Children should continue to use practical equipment to support conceptual understanding until they are confident without it. Schools should decide on a consistent approach to the location of exchanged digits and encourage children to be consistent with their placement to reduce errors. However, understanding is more important than positioning and this should be made clear to children.

Children need to be able explain, illustrate and justify relationships, patterns and generalisations within multiplication and division using models and images to support their reasoning. Equipment and manipulatives should be used throughout all stages to support children in developing their ability to explain their thinking.

Stage	Examples	Guidance and Notes
Stage 1: Recording and developing mental images Children should experience practical calculation opportunities involving equal sets or groups using a wide variety of equipment, e.g. small world play, role play, counters, cubes etc. Children will count equal groups of objects. They will count in 2 s and 10s and begin to count in 5 s . Children will explore everyday versions of arrays such as egg boxes, baking trays, ice cube trays and wrapping paper Children will use repeated addition to carry out multiplication supported by the use of counters/cubes.	$2+2+2+2+2=10$ $5+5^{5} 5^{5}+5+55^{5}+5^{3}+5=30$ $5 \times 6=30$ 6 groups of 5 are 30 $(3+3) \quad 2$ groups of 3 are 6 $(2+2+2)$ 3 groups of 2 are 6 4 groups of 3 are 12 3 groups of 4 are 12 Children should use pictorial representations and may use rings to show e.g. 3 groups of 2 and 2 groups of 3 introducing the commutative law of multiplication.	Initially recording of calculating should be done by adults to model what children have done; using pictures, symbols, numbers and words. Over time there should be an expectation that children will also become involved in the recording process. Remember that the term 'lots of' may present a different image for children, using the words 'groups of' can be less confusing
Stage 2: Developing understanding multiplication as repeated addition, counting on the bead string, number line and hundred square Children continue to use repeated addition to carry out multiplication tasks and represent their counting on a bead string or a number line.	'Count out three groups of 5 then count the beads altogether'. Children explore patterns on a 100 square to help them begin to recognise multiples and rules Multiples of 2 of divisibility.	Songs and games provide opportunities to reinforce times tables facts and their associated patterns. These models illustrate how multiplication relates to repeated addition.

Stage 3: Developing understanding of multiplicative relationships

Children should to be able to visualise multiplication as a rectangular array. This helps develop understanding of the commutative law
i.e. $3 \times 4=4 \times 3$

A rectangular array allows the total to be found by repeated addition and the link can be made to the ' x ' sign and associated vocabulary 'groups of' or 'lots of'.

The outcome of 3×6 will be the same as 3×6 partitioned (in this example into $2+4$)

Children use larger preconstructed arrays to look at ways these can be partitioned to use already know number facts e.g 7×8

The relationship between the array and the number line showing both repeated additions should be demonstrated alongside each other

For more direct comparison, this could then be demonstrated on a single number line as appropriate.

Cuisennaire rods and Numicon can be used on a number line to develop understanding of multiplication as repeated addition and can be made into arrays.

Children should partition arrays in a variety of helpful ways which are not necessarily the ways in which they will eventually partition them to be in line with formal written methods

This is the first exposure to the distributive law of multiplication and children should be given plenty of opportunity to explore this.

| Stage 4: Using the Grid
 Method to multiply by a
 single digit number. | $4 \times 13=$
 The link between arrays
 and the grid method
 should be made clear to |
| :--- | :--- | :--- | :--- | :--- | :--- |
| children by the use of | |
| place value apparatus such | |
| as place value counters | |
| and Dienes. | |

DIVISION

| Stage | Examples |
| :--- | :--- | :--- |
| Stage 1: Recording and
 developing mental
 images
 Children are encouraged
 through practical
 experience to develop
 physical and mental
 images. They make
 recordings of their work
 as they solve problems
 where they want to make
 equal groups of items or
 sharing objects out
 equally. | Initially recording of
 calculating should be done
 by adults to model what
 children have done in
 pictures, symbols,
 numbers and words. Over
 time there should be an
 expectation that children
 will also become involved
 in the recording process. |
| Sharing and grouping | |
| Children solve problems by sharing | |
| 15 eggs are shared between 5 baskets. How many | |
| in each basket? | |

Stage 2: children use equal step counting to support division	15 eggs are placed in baskets, with 3 in each basket. How many baskets are needed? Counting on a labelled and then blank number lines. 15 $\div 3=5$	Using a bead string or number line children can represent division problems Children count on in equal steps based on adding multiples up to the number to be divided. Numicon and Cuisenaire rods can be used on a number line to develop understanding.
Stage 3: Developing understanding of multiplicative relationships	$\begin{array}{r} \\ 3 \times 4=12 \\ 4 \times 3=12 \\ 12 \div 4=3 \\ 12 \div 3=4 \end{array}$ Sharing many apples will ea Jw can we share the two get? t between four children? How m ıould each child ave? $\begin{aligned} & 12 \div 2=6 \\ & 1 / 2 \text { of } 12=6 \\ & 12 \div 4=3 \\ & 1 / 4 \text { of } 12=3 \end{aligned}$	Arrays support children in seeing the links between grouping and sharing and between multiplication and division. Children continue to solve problems by grouping or by sharing developing an understanding of remainders in each context. They understand when a remainder can be expressed as a fraction. Children begin to make connections between division and fractions

Progression of Mental Calculation

	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Autumn 1	Count numbers to 20, forwards and backwards	Count in multiples of 2,5,10	Count in multiples of 3	Count in steps of 10, 100 and 1000 from any number	Count forwards and backwards in powers of 10 from any number	Revision from years 3-5
	Read and write numbers to 20 in numerals Number bonds to 5 Related subtraction facts	Number bonds from 20 to 100 (in multiples of 10)	Revise \times and $\div 2,5$ and 10 Number bonds to 1000 (in multiples of 100 then 50)	Revise \times and $\div 2,4$ and 8	Recall the prime numbers up to 19	Additive relationships for 90°, 180° and 360° Complements to 1000, 100, 10 and 1
Autumn 2	Count numbers to 50, forwards and backwards	Count in multiples of 2, 5 and 3 Count in steps of 10 from any number	Count from 0 in multiples of 4 and 8	Count from 0 in multiples of 6, 7 and 9	Count backwards through 0 to negative numbers	Use double number lines to count in approximate conversions for metric and Imperial measures including miles to kilometres
	Read and write numbers to 50 in numerals Number bonds to 10 (emphasise subitising to 5 e.g. $8=5+3$) Related subtraction facts	Number bonds from 20 to 100 (in multiples of 5 and 10)	Add and subtract mentally: Three-digit numbers and onedigit; Three-digit numbers and 10s; Three-digit numbers and 100s	x and $\div 3,6,9$ and 7	Square numbers to 15^{2} and multiples of 10 to 100^{2} Cube numbers to 5^{3} and also 10^{3}	Using known \times and \div facts to support calculation Use knowledge of rules of divisibility??
Spring 1	Count numbers to 100, forwards and backwards	Count in multiples of 3 Count in even numbers up to 50 and odd numbers up to 30 , forwards and backwards	Count from 0 in multiples of 50 and 100	Count from 0 in multiples of 25	Count forwards and backwards in powers of 10 from any number and through 0 to negative numbers	Revision from years 3-5
	Read and write numbers to 100 Number bonds to 20 Related subtraction facts	Number bonds from 20 to 100 Add and subtract mentally: 3 one-digit numbers	x and $\div 3$	\times and \div all to 12×12	Use place value to add and subtract large numbers mentally	
Spring 2	Count in multiples of 2	Count in steps of $1 / 2$ and $1 / 4$ up to 10 (including context of time)	Revise counting in steps of $1 / 2$, $1 / 4$ and $1 / 3$ Count in $1 / 10$ s, forwards and backwards	Count in multiples of 60 from O (to relate to time conversions)	Count in unit fractions including $1 / 10$ s and 1/100s, bridging through zero.	Revision from years 3-5
	$\begin{aligned} & \text { Facts families to } 20 \text { (e.g. } \\ & 8+7=15,7+8=15,15-7=8,15- \\ & 8=7) \end{aligned}$	Add and subtract mentally: Two-digit numbers and onedigit; Two-digit numbers and 10s	x and $\div 2,4$ and 8	\times and \div all to 12×12	\times and \div whole numbers and decimals by powers of 10	
Summer 1	Count in multiples of 2 and 10	Count in steps of $1 / 3$ up to 10	Count in decimal tenths	Revise counting in $1 / 10$ s and other unit fractions Count in $1 / 100$ s	Count in decimals, bridging through zero	
	Doubles of numbers to 10 and corresponding halves	x and $\div 2$ and 10 Add and subtract mentally: 2 twodigit numbers (initially without bridging followed by bridging)		Know and use factor pairs	x and \div numbers mentally using known facts	
Summer 2	Count in multiples of 2, 10 and 5	Revisit aspects from Y1 and Y2	Count in coin values (including 20)	Count in decimals, forwards and backwards	Counting in units of time(e.g. 7 days, 30 minutes)	

| | | | | Counting forwards and
 backwards in minutes across
 o^{\prime} clock $)$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | Doubles of numbers to 20 and
 corresponding halves | \times and $\div 2,10$ and 5 | \times and $\div 5,10 ; 2,4,8$ | Bridge across 60 when
 calculating time |

